Convex Optimization Problem II

Jong-June Jeon September, 2022

Department of Statistics, University of Seoul

Things to know

- Convex set and examples
- Visualization of a halfspace
- Convex preserving map

Convex set A subset C of \mathbb{R}^n is convex if and only if for all $x_1, x_2 \in C$ and all $\theta \in [0, 1]$,

```
\theta x_1 + (1 - \theta) x_2 \in \mathcal{C}
```


Figure 1: One convex set and two nonconvex sets

<u>Cone</u>: A set $K \subset \mathbb{R}^n$ is a cone if $x \in K \to \alpha x \in K$ for any $\alpha \ge 0 \in \mathbb{R}$. <u>Convex cone</u> C is convex and cone, which means that

 $\theta_1 x_1 + \theta_2 x_2 \in C$

for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geq 0$.

Convex cone is convex.

Figure 2: Convex cone

Norm cone

$$\mathcal{C} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R}_+ : ||x||_2 \le t\}$$

Note that

$$C = \{ (x,t) \in \mathbb{R}^{n+1} : \begin{pmatrix} x \\ t \end{pmatrix}^\top \begin{pmatrix} I & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} \le 0, t \ge 0 \}$$

Norm cone is convex.

Example (norm cone)

<u>Conic hull</u>: the conic hull of a set S is the set of all conic combinations of the points in S,

$$\mathsf{Cone}(S) = \bigcup_{n=1}^{\infty} \left\{ \sum_{i=1}^{n} \alpha_i x_i : \alpha_i \ge 0, x_i \in S \right\}.$$

(Conic hull) The conic hull of a set C is the smallest convex cone containing C. (proof)

- Conic hull of a set ${\boldsymbol C}$ is convex and cone.
- If C' is convex cone containing C then the conic hull of C is contained by C'.
- Thus, the proof is complete.

Ray:
$$\{x_0 + \theta \nu : \theta \ge 0\}$$

A ray is convex.

Figure 3: Visualization of Ray

Hyperplane and Halfsapce

- Hyperplane: $\{x \in \mathbb{R}^n : a^\top x = b\}$
- Halfspace: $\{x \in \mathbb{R}^n : a^\top x \le b\}$

Both hyperplane and halfspace are convex. Hyperplain divides the space into the two halfspace. Each halfspace is the SOLUTION SET OF THE INEQUALITY.

Figure 4: Hyperplane and Halfspace

Visualization of half space

We know that $C = \{x : a^{\top}x = 0\}$ is illustrated by line on a plane and the vector can be denoted by normal vector at the origin of the line. Let x = a then $a^{\top}x > 0$ and we know that the $x = a \in \{x : a^{\top}x \ge 0\}$. That is, the half space containing the denoted a becomes $\{x : a^{\top}x \ge 0\}$.

Let $a \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$. Fix an a and consider a set $\{x : a^{\top}x = 0\}$. The figure below shows how to display $\{x \in \mathbb{R}^n : a^{\top}x = b\}$ on graph. First consider a set $\{x \in \mathbb{R}^n : a^{\top}x = 0\}$.

Unless $a \neq 0$, we can choose $x_0 \in \mathbb{R}^n$ satisfying $a^{\top}x_0 = b$. Similarly, we can denote a as a perpendicular vector on the line.

 $(\{x: a^{ op}x \ge b\}$ 영역의 시각화 방법)

• $\{x : a^{\top}x = b\}$ 을 나타내는 직선을 그린다.

직선의 위쪽의 한 점 x₀를 선택한 후 a[⊤]x₀를 계산한다.
a[⊤]x₀ > 0 가 참이면 해당 영역을 칠하고, 거짓이면 반대쪽 영역을 칠한다.

15 / 32

Practice 1

Consider $a, x \in \mathbb{R}^2$

- Let $a = (2,1)^{\top}$ and draw the point a in \mathbb{R}^2 .
- Draw the line, the set of points (x_1, x_2) satisfying $2x_1 + x_2 = 0$.
- Check that the line is the set $C = \{x : a^{\top}x = 0\}.$
- Make a shade on the region $2x_1 + x_2 \ge 0$ and check that the region contains a.
- Finally check that *a* is orthogonal to all elements in *C*.

Practice 2

Consider $A = \mathbb{R}^{m \times 2}$ and $x \in \mathbb{R}^2$. Denote $a_j^{\top} \in \mathbb{R}^2$ for $j = 1, \dots, m$ be the *j*th row vector of A. We will illustrate the region $\{x : Ax \leq 0\}$.

- Note that $\{x : Ax \leq 0\} = \cap_{j=1}^m \{x : a_j^\top x \leq 0\}.$
- Draw the region, the set of points (x_1, x_2) satisfying $a_j^{\top} x \leq 0$ for each j.
- Find the intersection of the regions.

Examples (l_2 -ball) $C = \{ \mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n : x_1^2 + \cdots + x_n^2 \leq 1 \}$ Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \cdots + x_n^2}$.

$$\mathbf{x} \in \mathcal{C} \Leftrightarrow \|\mathbf{x}\|_2 \le 1$$

For $\mathbf{x}, \mathbf{x}' \in \mathcal{C}$,

$$\begin{aligned} \|\theta \mathbf{x} + (1-\theta)\mathbf{x}'\|_2 &\leq \|\theta \mathbf{x}\|_2 + \|(1-\theta)\mathbf{x}'\|_2 \\ &= \theta \|\mathbf{x}\|_2 + (1-\theta)\|\mathbf{x}'\|_2 \leq 1 \end{aligned}$$

 $\theta \mathbf{x} + (1 - \theta) \mathbf{x}' \in C.$ The first inequality holds because of triangular inequality.

Figure 5: l_p -ball

Figure 6: Ellipsoid

Examples (polyhedron)

Let A be $n \times p$ matrix, $b \in \mathbb{R}^p$, C be $m \times p$ matrix, and $d \in \mathbb{R}^m$.

 $C = \{x \in \mathbb{R}^n : Ax \le b, Cx = d\}$ is convex.

위 예는 Convex set의 정의를 이용해서 확인할 수 있는 예다. (Proof) Let $x, x' \in C$ For $\theta \in [0, 1]$

 $A(\theta x + (1 - \theta)x') = \theta Ax + (1 - \theta)Ax' \le \theta b + (1 - \theta)b = b,$

and

$$C(\theta x + (1 - \theta)x') = \theta Cx + (1 - \theta)Cx' = d$$

So, $\theta x + (1 - \theta)x' \in C$

Figure 7: Visualization of Polyhedron

supporting hyperplane

Let $C \subset \mathbb{R}^n$ and x_0 be a point on the boundary of C. If $a \neq 0$ satisfies $a^{\top}x \leq a^{\top}x_0$ for all $x \in C$ then, the hyperplane $\{x : a^{\top}x = a^{\top}x_0\}$ is called a supporting hyperplane to C at x_0 .

Figure 8: Caption

Convex preserving operation

- If C_1 , C_2 are convex sets, then $C_1 \cap C_2$ is also convex set.
- If C is convex set, then $C + z = \{x + z : x \in C\}$ is convex.
- Let C be convex subset of \mathbb{R}^m and $f: x \in C \mapsto Ax + b \in \mathbb{R}^n$ where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Then $\{y: y = Ax + b, x \in C\}$ is convex.
- Perspective function*
- Linear fractional functions*

Perspective function

 $f: \mathbb{R}^n \times \mathbb{R}_{++} \mapsto f(x, z) \in \mathbb{R}^n$, where f(x, z) = x/z.

The perspective function preserves the convexity of a set. If $C \subset \text{dom}(f)$ is convex, then f(C) is convex. In addition, an inverse image of f is convex.

Linear fractional function

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$. $f : \mathbb{R}^n \mapsto f(x) \in \mathbb{R}^m$, where

$$f(x) = \frac{Ax+b}{c^{\top}x+d}, \ \ \mathrm{dom}(f) = \{x: c^{\top}x+d > 0\}.$$

<u>Linear fractional function</u> Let $g : \mathbb{R}^n \mapsto \mathbb{R}^{m+1}$ is affine, i.e.,

$$g(x) = \begin{pmatrix} A \\ c^{\top} \end{pmatrix} x + \begin{pmatrix} b \\ d \end{pmatrix}$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$. Let P be a perspective function, then

$$f(x) = P \circ g.$$

This representation of f helps to prove that the linear-fractional function is convex preserving.

- Prove that the linear fractional function is convexity preserving map.
- Solve 2.1-2.10, 2.16-2.19

Appendix

Separating hyperplane theorem

Let C and D be convex sets in \mathbb{R}^n with $C \cap D = \phi$. Then, there exists $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in \mathbb{R}$, such that $a'x \leq b$ for all $x \in C$ and $a'x \geq b$ for all $x \in D$.

Appendix

Strict separating hyperplane theorem

In general, a strict separating hyperplane does not hold, even when C and D are closed.

Figure 9: Not strict separating convex sets

Strict separating hyperplane theorem

Let C be a closed convex set and $D = \{x_0\}$ with $x_0 \notin C$. Then, there exists $a \neq 0$ and b such that $a^{\top}x < b$ for all $x \in C$ and $a^{\top}x > b$ for $x \in D$.

This result implies that a convex is represented by all intersections of hyperplanes containing the convex set.

Converse separating hyperplane theorem

See p50.